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Abstract

Using global interpolation functions (GIFs),
boundary element solutions are obtained for two-

and three-dimensional viscous flows. The so-

lution is obtained in the form of a boundary

integral plus a series of global basis functions.
The unknown coefficients of the GIFs are deter-

mined to ensure the satisfaction of the govern-

ing equations at selected collocation points. The
values of the coefficients involved in the bound-

ary integral equations are determined by enforc-

ing the boundary conditions. Both primitive-

variable and vorticity-velocity formulations axe
examined.

Introduction

The boundary element method (BEM) has tra-

ditionally been applied to problems governed by

linear differential equations. At the core of the

basic BEM computational process is the fun-

damental solution (also referred to as the free-

space Green's function) defined as the impulse

response of the governing equation to a unit ac-

tion. This fundamental solution is either too dif-

ficult or impossible to derive for practical non-

linear problems. Recently, with the introduc-

tion of the so-called Dual Reciprocity techniques

(see e.g., Nardini & Brebbia [1982]; Brebbia et

al., [1991]; Partridge et al., [1992]; Cheng et al.,

[1993]: Lafe [1993]: Lafe & Cheng [1994]). the

method is being proposed for certain classes of

nonlinear problems.

Using the Dual Reciprocity approach, a given

problem is typically decomposed into two parts

- the linear and nonfinear portions. The solution

to the linear portion is represented by a bound-

ary integral whose kernel consists of the funda-

mental solution to the linear governing equation.

The nonlinear part is represented by either 1) lo-

cal basis functions (Brebbia et al., [1991]); or

2) global interpolation functions (GIFS) (Lafe

[1993]). In either case, the boundary integral

expressions and interpolation functions contain

coefficients whose values are to be determined

by enforcing the boundary conditions. When the

"direct BEM" approach is followed the unknown

coefficients are in essence the unknown physical

variables (velocity components, pressure, tem-

perature) of the problem. On the other hand.

using the "indirect BEM" approach, the un-

knowns are the weights/strengths of the bound-

ary sources/dipoles and the local/global interpo-

lating functions. The computational intensity of
the indirect approach is much less than for the
direct.

In this paper, we report the formulation and

development of GIF-based indirect BEM codes

for two- and three-dimensional incompressible
viscous flows.

Governin Equations

2D Primitive Variable Formulation

The governing equations are
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where (u.,v.) are the velocity components,

and p. is the pressure. Let x = x./L; y = y./L;



= ..I_:_ = v.l_.:v = p.l(p_). With
these the governing equations become:
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where Be = p_L/#.

By taking the divergence of the momentum

equation and ,usingthe continuityequation,we

obtaina PDE forthe pressurein the form:

COu8v COuCOy)v2p=2 _0y coy_ (7)

BEM-GIF Formulation The solution for a

flow variable ( is decomposed into two parts ((o

and (1), such that

(=G+(_

and (0 is the solution to the convection-free prob-
lem

V2(o = 0

Therefore, the correction (1 is the addition re-

quired such that the full governing equation is

satisfied. The part (0 can be modeled to a high

degree of precision by boundary integral equa-

tions. The correction _1 is represented by a series

formed by global basis functions.

The fundamental solution for convection-free

two-dimensional must satisfy

V2g(x,x ') = 27r_(x,x')

where b is the Dirac delta function applied at

point x = (z,y), and felt at the point x =

(z t, y_). The closed form solution for g is eas-

ily shown to be (Jaswon 8z Symm [1977])

.q -" In r

where r = Ix - xq.

We distribute sources (plus vortices - for the

velocities) of unknown strength ,." on the flow

boundary r. The combination of sources and

vortices for the velocity" components is importani

because of the need to automatically conserve

mass. The solution for u. v,p is written as:

p(x)

= fr {,ol(x')gll(x,x') +,_2(x')gt_(x,x')} dr

+ _ {fl_kCkn(x) + &_¢_2(x)} (S)
k

= fr {_l(X')g21(x'x') +_2(x')gn(x'x')} dr

+ _ {_l/,_k_l(x) + _2kCkn(X)} (9)
k

= [ _3(x')g33(x,x') dr + _ &k'I'k33 (10)
Jr k

lowing conditions:
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For example, with gn = g22 = g = In r, we have

g12 = _-arctan z--_ j

g_' = arctan{ y-y'}xx'

Note that when gll is a source, the associated

functions required to ensure mass conservation

gij (i _ j) turn out to be vortices.

Similarly, using hyperbolic cosine global bases,

with ¢kn = @_n = cosh(m_x)cosh(n_y)

(m_.,nt = 1,2,3,...) we have

_kn = _ n_.k_sinh(mtz)sinh(n_y)
rnk

_/,_ = _ m..._sinh(mtz) sinh(nky)
nk

in which x = (x,y), gG are associated with
the fundamental solutions of the convection-free

problem, and ¢kij are global interpolation bases.

For mass to be automatically conserved the free-

space functions and GIFs must satis_" the fol-



The solutionsforother auxiliarybases q'_ij(i

j) forgiven _kiiare shown below:

• Polynomial GIF

_kn = _tc22 =

¢llk12 ---

_k21 =

zm y n

m xrn_l yn+ 1
n+l

ll xm+ll/n_ 1-_7-7
• Trigonometric GIF

_kll -" 0k22 --" COS(W2X) COS(n_/)

n

Ok12 = -- sin(mz)sin(ny)
_n

Fr_

_k21 = -- sin(rax)sin(ny)
n

• Radial (]IF

_kll = _k22
T m

- m = 2(n + 1)
7rt

= -r m {(x - zn)(y- y,) +(I) kl 2

= _r '_ {(_ - =.)(y - y_) +_k21

If nd terms are selected in the GIF series, then

the coefficients _ik (i = 1,2,3; k = 1,2,--'nd)

are determined by enforcing the momentum

equations at nd collocation points. The strengths
a.'i (i = 1.2, 3) of the sources/vortices are deter-

mined by enforcing the boundary conditions at

selected nb boundary nodes. The details of the

numerical implementation is outlined later.

BEM-GIF Equations

V_:e distribute sources of strength _1 (for ¢) and

w2 (for _') on the boundary r. The complete
solution can be written in the form:

i(x) = fr,_l(x') dx'+ )'-:._,k¢k(x) (17)
k

C(x) = fr_2(x')dx'+_2k¢_(x)(IS)
k

The coefficients Bit (i = 1,2) are determined by

enforcing equations (15) and (16) at select collo-

cation points, while wi (i = 1,2) are determined

by enforcing the boundary conditions.

3D Primitive Variable Formulation
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2D Streamfunction-Vorticity Formulation

In two-dimensional flow, the streamfunction

and vorticity ¢" are defined by

0¢
U --

Oy

O¢

Ox
Ou Ov

C -
Oy Ox

When these are used in the governing equations,

the continuity equation is automatically satis-

fled, and the momentum equations become:

V2_ = -C (15)

(ou¢ ave)v2C = R, t0_ +_ (16)
3

+

+

- -o-::.-+ _ \ o_

(19}

to_ + _ + 0_ )
(20)

1 (02v 02v 02t'_

\bT_+_ +o:_)
(21)

+ b-_-y_+ o_)
(22)

Taking the divergence of the momentum equa-

tion and enforcing mass conservation, the perti-

nent PDE for the pressure is:

+
(23

BEM-GIF Equations

The fundamental solution for

three-dimensional must satisfy

convection-free

V2g(x, x') = 4n'_(x, x')



where15 is the Dirac delta function applied at

point x = (x,y.z), and felt at the point x =

(z', y', z'). The closed form solution for g is easily

shown to be (Jaswon X: Symm [1977])

1
g=--

r

where r = Ix - x'].
The full solution can be written in the form

u(x) = fr_l(x')g,l(x,x') dr

+ fr w2(x')g12(x, x') dr

X I t,+fr _3( )g13(x, x ) dr

+ _ _kCk,lix)
k

+ Z _2k(i)kI2(X)

k

k

v(x) = fr_x(x')gn(x,x')dr

+ fF W2(X')g22(X' X') dr

03 t t+ fr 3(x )g23(x,x ) dF

+ _ _lkOk21(x)

+ Z/32kCk22(X)

k

+ E_3kck_(_) (2s)
k

"//,/X ) = fFCJI(Xt)g3,(X, Xt) dF

+ fr tM2(xt)g32iX' X')

+frW3(X')g33(X, X') dr

+ _ _lk%3,(x) + _k%32(x)
k

+ _ _3kCk_(x) _26)
k

p(X) = fFOJ4(X')g44(X,X') dF

+ Y'_4kCk_
k

(27)

4

Sources/Dipoles By selecting gll = g'.: =

g33 = g44 = g = 1/r and enforcing continuity.

the functions go (i # j) are given by:

where

(z - x')(y - y')
9'2 =

rv:r

(Z -- Z')(: -- :')
_13 =

ry..r

iz - z')Cv - v')
g2' =

Tx: r

(v - v')( z - _')
g23 =

rxz r

i x -- xt)(z -- :')
_31 --

rxy r

(y - v')(=- z')
_32 --

rxy 7"

and

r_ = (z - z') 2 + (y - y')2

r_- = (z - z') 2 + (z - z') 2

_- = (v - v')_ + (- - =,)2

GIF Bases If (I)kl 1 -- I_.k22 -" _k33 -" ¢_k44 "-

cosh(mkz)cosh(nky) cosh(/kz) then for mass to

be automatically conserved, the auxiliary func-

tions Okij (i # j) are given by:

¢Y_k , 2

(I) k,3

_k2,

¢k23

_k31

(I_k32

_ nA: sinh(mkz)sinh(nky)cosh(Ikz)
2ink

lk

= -- 2m----_sinh(mkx) cosh(nky)sinh(/kz)

mk
= - _ sinh(mkz) sinh(nky) cosh(/kz)

_Ttk

lk

= -2n'---_cosh(mkz) sinh(nky) sinh(/kz)

_ m_ sinh(mkz) cosh(nt_y) sinh(/kz)
21k
rtk

= -21"kk cosh(m_z) sinh(n_:y) sinh(/kz)

Similar auxiliary functions can be derived for

other selections of GIF such as

1. Polynomial z=y'_zZ;

2. Trigonometric cos(rex) cos(ny) cos(/z); and

3. Radial 1 + r 2(=+U functions.



3D Velocity-Vorticity Formulation

The vorticity vector _ = (_z._._-) is defined by

_-Vxu

where V x is the curl operator. Using the above

in conjunction with the continuity equation V-

u = 0 the following Poisson equations can be

derived for the velocity components:

V2u = a6/az- a6/% (28)

V2v = o_z/sx - o_z/az (29)

V2w = O_/Oy- i)_/cgx (30)

where x = (x, y, z) is the spatial coordinate.

The three:component vorticity transport

equation is (Fletcher [1991])

V • (u_) - (_ • V)u - _-_eV2_ = 0 (31)

For three-dimensional flows, there are six

equations for u, v, w, _, _u, _z" These equations

are expressible in the general elliptical form:

V20 = f (32)

where 0 = (01,02,-..,06), 01 = u, 02 = v,

0 3 : W, 04 ---- G, e5 -- _y, 06 _'z, and

f = (fl,f2."',f6), with:

'f_i i 0.- #_

f3 } = { O_ - 0x (33)
f_ / | R,(_-_2)

OuG OvG OwG
_' _ - Ox + ---_-y+ O---U

e,

¢ o,, a_

Ou¢u Ov_y OwCy
_21 = Oz + _ + Oz

"v . Ov Ov

OuG OvG OwL
(_ = O---g-+ _ + O----Z

0,,, ow
_32 = G _; + _ Ou + C"_z

BEM/GIF Equations

Vfe write the solution in the form:

Oi(x) = /r _i(x')g(x. x') dx' + _ 3i_,I,_(x)
k

i = 1,2,...6 (34)

where g is the free-space Green's function for the

Laplace's equation (i.e., convection-free flow).

The coefficients/_ik are determined by enforc-

ing the governing equations at select collocation

points, while the strengths wi of the fictitious

boundary sources are determined by enforcing

the boundary conditions.

Numerical Implementation

Regardless of which formulation is used, the

above BEM-GIF schemes share a common pat-
tern: each solution consists of a sum of a bound-

ary integral and a finite series. The numerical

implementation can also be generalized for all
the formulations.

Consider the flow variable 0. We subdivide

the boundary into nb elements. Let Nj(x) (j =
1, 2,'-" rib) represent the basis functions describ-

ing the distribution of w on F.

Source/Vortex Strength Determination

By selecting each of the nb boundary points as

successive origins of integration, the pertinent in-

tegral equations can be assembled into the sys-
tem:

nb _t¢

_ a,_,,,,,, = b, i= 1,2,...,_ (as)
j=l k=l

where n_, is the number of source/vortex combi-

nations used to model the flow variable, and

aikj =

bi =

f r, NAx')_s(,,',,,d dx'
fr, Y_(x')_(x',x;)dx'

(36)

1_ d _w

0(xi) - _k=] _j=] _i_ x; _ r_

(37)

_(xi/- r'?_. r'",, _ -_'*,on - ",.,--x=l _-,j=l _"2x On Xi _ _q
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where ra is the boundary segment on which the

variable 0 is prescribed while rq is the portion

on which 08/On - VO- n is prescribed.

Therefore, we have nbn_ equations to deter-

mine wjk (j = 1,2,...rib; k = 1,2,...n_). Sym-

bolically equation (35) can be written in the al-

ternative form:

[,4]{W} = {B} (38)

which can be invertedto give:

{W) -[.4] -I {B} (39)

GIF Coefficients Determination

The algebraicequationsfordetermining the GIF

coefficients3 are nonlinear,on account of the

convective terms. Therefore, the solutionpro-

cesshas to be iterative.We startby assuming a

convection-freeflow,so that allthe 3 values axe

set to zero initially.We then compute the error

E in the transportequation for8 at each of the

nd collocationpoints.The errorA8 isassumed

to be relatedto E through

A8 = A_

where A is a relaxation parameter. The error A/9
is a function of the errors in the GIF coefficients.

That is:
rtd rt_a

_/9 = Z Z AZJ k ¢-/} (40)
k=l j=l

Hence, by computing A/9 for all nd points and all

flow variables we have a system of equations:

[@]{A3) = {Az} (41)

which when inverted gives:

{±Z)= (42)

The iterative steps are:

1. Start with atrial 3k (k = 1,2,''-nd) for all

flow variables. We have found a zero initial

value to be the most convenient.

2. Obtain W using equation (39).
6

. Use discretized forms of the appropriale in-

tegral equations to compute t9. V/9 at all ,,_

points.

4. Compute the error _ in the transport equa-

tion at each of the collocation points.

5. Use equation (42) to compute new values of

6. Go back to Step 2 if convergence condition
is still unsatisfied.

Note that the matrix inversions in equations (39)

and (42) need only be performed once, for fixed

boundary problems. The vectors }4' and /3 are

the quantities whose values change during the it-

erative process. Once convergence is reached, the

discretized integral equations can be used rou-

tinely to obtain 0 = (u,v,w,p,_,_z,_,_:) or

the gradient at any point (x) of interest.

BEM Codes & Preliminary Tests

Four boundary element codes were developed.
These include:

I. PRIM-2D This isa two-dimensionalgen-

eralpurpose boundary element solverbased

on the use of primitivevariables.The code

can be applied to any geometry. Bench-

mark testsused globalinterpolationfunc-

tionsdrawn from familiesof trigonometric,

hyperbolic,radial,polynomial,wavelet,and

Chebychev functions.

. VORT-2D This a two-dimensional code

based on a streamfunction-vorticity formu-

lation. The GIF bases enumerated in (1)
were tested.

. PRIM-3D This a full three-dimensional

boundary element code using primitive vari-

ables. Four momentum equations are solved

for the three velocity components (u, v, w)

and the pressure(p).

o VORT-3D A full three-dimensional code

based on the vorticity-velocity formulation.

Six transport equations are solved for the
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three vorticity components ((x.(_.(:) and

the three velocity components (u. v, w).

Typical performance test results using PRIM-

2D for the lid-driven cavity problem (Fig. 1)

are shown in Figs. 2-3. The number of bound-

ary elements nb = 64 (i.e., 8 per side); and the

number of collocation points na = 64. The test

results shown were obtained using the following

relaxation parameters:

Au = 0.2

Ap = 0.02

A,., = 1.0

Preliminary test runs on three-dimensional de-

veloping flow_ in straight and curved square

ducts (Fig. 4) were also carried out. We set

a = b = 1; R = 10, and a = _r/2. We assumed
a plug flow (u = 1; v = w = 0) at the inlet. A

total of 72 rectangular boundary elements and

343 internal nodes were used. Other salient pa-
rameters include:

Au =A,=A,_=A_ = 0.001

),p = 1.0

Re = 1000

The velocitv convergence characteristics of

VORT-3D for the curved square duct is shown

in Fig. 5.

This is an ongoing research effort. We plan

to report the comprehensive performance char-

acteristics of all four BEM modules in an upcom-

ing publication.

Conclusions

The paper presents the general foundation for

obtaining boundary integral solutions to incom-

pressible viscous flows. The GIF- based bound-

ary integral equations ensure the automatic con-

servation of mass. Critical factors which affect

the convergence rates and the quality of the so-
lutions include:

1. The choice of the relaxation parameter A as

a function of the Reynold's number Re, the

number of boundary elements rib, the num-

ber of collocation points nd, the domain size

.

L. and other parameters that may influence

the flow problem. The convergence rate is

highly sensitive to the choice of A.

The optimal location of the collocation

points xk (k = 1.2..-.ha) so that the en-

suing solution process will capture the un-

derlying physics of the problem. It is clear

that nd can be much smaller than the num-

ber of computational nodes required in the

domain methods (e.g., finite elements and

finite differences). However. since we are at

liberty to select these points, their optimal

location is crucial, in order to exploit the

inherent advantages of the BEM-GIF for-
mulation.
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Figure 1: Lid-driven Cavity Problem
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Figure 2: Velocity Convergence Rate for Cavity. Problem

1.00_

0.80--
Z

0.60--_

0.40 --

Z

0.20--

Z

0.00 -

-1.00

\,

\
\

\
\

-0.50 0.00 0.50 1.00

Horizontal Velocity

Figure 3: Centerline Velocity Profile for Cavity Problerr



T

I

Figure 4: Curved Square Duct Problem
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